

Motion and Forces in a Gravitational Field: World records and fun fairs – Comprehension

set	number	solution
Comp1	1	Short arms – you raise the weight through a shorter distance so do less work against
	2a	gravity Power = work done / time
	2a	Estimate length of arms = 1 m.
		Work done = force \times distance moved = 138×10^3 kg \times 9.81 N kg ⁻¹ \times 1 m = 1.35×10^6 .
		Power = work done / time = 1.35×10^6 J / 3600 s = 375 W
	2b	375 W / 0.746 kW =0.50
		Bench presser has a horsepower of 0.5.
	3	A reasonable estimate following the trend would be larger than 250 km/h. This is
		probably an unreliable prediction. Some reasons would be : do people actually want to
		travel that fast, the improvements have been only small indicating that technology isn't
		changing just being slightly improved so unlikely to keep on increasing, safety concerns
		trands for rollar apators
		trends for rollercoasters
		250
		200
		(q 200
		<u>\$</u> 150
		() p
		<u>8</u> 100 ——————————————————————————————————
		\longrightarrow max speed (km/h)
		g 50
		0
		1994 1996 1998 2000 2002 2004 2006
		1994 1990 1990 2000 2002 2004 2000
		year of completion
	3a	Equating g.p.e. and k.e. leads to $v = \sqrt{2gh} = \sqrt{2 \times 9.81 \times 127} = 49.9 \text{ m s}^{-1}$
	3b	Answer to 3a is less than 200 km h ⁻¹ (equivalent to 55.5 m s ⁻¹). This is probably because
		the rollercoaster doesn't just 'drop' it will also have a motor to accelerate it downwards
		in addition to the acceleration provided by gravity.
	Fa	
) 3a	Resolving horizontally t=128/u cos45°
	5a	Resolving horizontally t=128/u cos45° Substitute into s= ut + ½at² (vertically)
	ja ja	Substitute into $s = ut + \frac{1}{2}at^2$ (vertically)
	3a	Substitute into s= ut + $\frac{1}{2}$ at ² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$
	- 3a	Substitute into s= ut + ½at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}} -129 u^{2} \cos^{2} 45^{\circ} = -80300$
		Substitute into s= ut + $\frac{1}{2}$ at ² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}} -129 u^{2} \cos^{2} 45^{\circ} = -80300$ $u = 35.3 \text{ m s}^{-1}$
	5b	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics
		Substitute into s= ut + $\frac{1}{2}$ at ² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s _{max} y=0
	5b	Substitute into s= ut + $\frac{1}{2}$ at ² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s _{max} y=0
	5b	Substitute into s= ut + $\frac{1}{2}$ at ² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s _{max} y=0
	5b 5c	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics $Vertically \text{ when s} = s_{\text{max}} \text{ v} = 0$ $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹
	5b	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics $Vertically \text{ when s} = s_{\text{max}} v=0$ $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300
	5b 5c	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2}\cos^{2}45^{\circ}}$ $-129 u^{2}\cos^{2}45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics $Vertically \text{ when s} = s_{\text{max}} \text{ v} = 0$ $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹
	5b 5c	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2}\cos^{2}45^{\circ}}$ $-129 u^{2}\cos^{2}45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s _{max} v=0 $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹ $400 \text{ km h}^{-1} = 111 \text{ m s}^{-1}$
	5b 5c	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2}\cos^{2}45^{\circ}}$ $-129 u^{2}\cos^{2}45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s _{max} v=0 $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹ $400 \text{ km h}^{-1} = 111 \text{ m s}^{-1}$
	5b 5c	Substitute into s= ut + ½at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s _{max} v=0 $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹ 400 km h ⁻¹ = 111 m s ⁻¹ $a = \frac{v^{2}}{r} = \frac{111^{2}}{450} = 27.4 m s^{-2}$
	5b 5c 5d	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2}\cos^{2}45^{\circ}}$ $-129 u^{2}\cos^{2}45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s_{max} v=0 $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹ 400 km h ⁻¹ = 111 m s ⁻¹ $a = \frac{v^{2}}{r} = \frac{111^{2}}{450} = 27.4 \text{ m s}^{-2}$ 27.4 m s ⁻² /9.8 m s ⁻² =2.8
	5b 5c	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2}\cos^{2}45^{\circ}}$ $-129 u^{2}\cos^{2}45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics $Vertically \text{ when s} = s_{\text{max}} \text{ v} = 0$ $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹ $400 \text{ km h}^{-1} = 111 \text{ m s}^{-1}$ $a = \frac{v^{2}}{r} = \frac{111^{2}}{450} = 27.4 \text{ m s}^{-2}$
	5b 5c 5d	Substitute into s= ut + ½at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2} \cos^{2} 45^{\circ}}$ $-129 u^{2} \cos^{2} 45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s _{max} v=0 $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹ 400 km h ⁻¹ = 111 m s ⁻¹ $a = \frac{v^{2}}{r} = \frac{111^{2}}{450} = 27.4 m s^{-2}$ 27.4 m s ⁻² /9.8 m s ⁻² = 2.8 $t = \frac{2\pi r}{r} \text{ for whole circle, for } 180^{\circ} \text{ divide by } 2$
	5b 5c 5d	Substitute into s= ut + $\frac{1}{2}$ at² (vertically) $-1 = \frac{u \sin 45^{\circ} \times 128}{u \cos 45^{\circ}} + \frac{1}{2} \times -9.8 \times \frac{128^{2}}{u^{2}\cos^{2}45^{\circ}}$ $-129 u^{2}\cos^{2}45^{\circ} = -80300$ u = 35.3 m s ⁻¹ See diagram on page 21 of Exploring Physics Vertically when s = s_{max} v=0 $s = \frac{u^{2}}{2a} = \frac{(35.3 \times \sin 45^{\circ})^{2}}{2 \times 9.8}$ s = 31.8 m s ⁻¹ Use the same method as 5a, -54.65 u² = -80300 u = 38.3 m s ⁻¹ 400 km h ⁻¹ = 111 m s ⁻¹ $a = \frac{v^{2}}{r} = \frac{111^{2}}{450} = 27.4 \text{ m s}^{-2}$ 27.4 m s ⁻² /9.8 m s ⁻² =2.8